skip to main content


Search for: All records

Creators/Authors contains: "Schild, Dirk J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X–Cu II /L). The role of PC was to trigger and drive the polymerization, while X–Cu II /L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X–Cu II /L, generating Cu I /L activator and PC˙ + . The ATRP ligand (L) used in excess then reduced the PC˙ + , closing the photocatalytic cycle. The continuous reduction of X–Cu II /L back to Cu I /L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X–Cu II /L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤ Đ ≤ 4.01) in contrast to photo-ATRP (1.15 ≤ Đ ≤ 1.22) under identical conditions. 
    more » « less
  2. Efficient transfer of halogen atoms is essential for controlling the growth of polymers in atom transfer radical polymerization (ATRP). The nature of halogens may influence the efficiency of the halogen atom transfer during the activation and deactivation processes. The effect of halogens can be associated with the C–X bond dissociation energy and the affinity of the halogens/halides to the transition metal catalyst. In this paper, we study the effect of halogens (Br vs. Cl) and reaction media in iron-catalyzed ATRP in the presence of halide anions as ligands. In Br-based initiating systems, polymerization of methacrylate monomers was well-controlled whereas Cl-based initiating systems provided limited control over the polymerization. The high affinity of the Cl atom to the iron catalyst renders it less efficient for fast deactivation of growing chains, resulting in polymers with molecular weights higher than predetermined by Δ[M]/[RX] o and with high dispersities. Conversely, Br can be exchanged with higher efficiency and hence provided good control over polymerization. Decreasing the polarity of the reaction medium improved the polymerization control. Polymerizations using ppm levels of the iron catalyst in acetonitrile (a more polar solvent) yielded polymers with larger dispersity values due to the slow rate of deactivation as opposed to the less polar solvent anisole, which afforded well-controlled polymers with dispersity <1.2. 
    more » « less
  3. Abstract

    Photoinduced initiators for continuous activator regeneration atom transfer radical polymerization (PICAR ATRP) using sodium pyruvate and blue light (λmax = 456 nm) is reported. Water‐soluble oligo(ethylene oxide) methyl ether methacrylate (OEOMA500) was polymerized under biologically relevant conditions. Polymerizations were conducted with 1000 ppm (with respect to the monomer) concentrations of CuBr2, tris(2‐pyridylmethyl)amine, and 1000 ppm or less FeCl3as a cocatalyst in water. Well‐defined polymers with up to 90% monomer conversion, high molecular weights (Mn > 190,000), and low dispersity (1.14 < Ð < 1.19) were synthesized in less than 60 min. The polymerization rate and dispersity were tuned by varying the concentration of sodium pyruvate (SP), iron, and supporting halide, as well as light intensity. The Cu/Fe dual catalysis provided oxygen tolerance enabling rapid, well‐controlled, aqueous PICAR ATRP of OEOMA500without deoxygenation.

     
    more » « less
  4. Abstract

    Atom transfer radical polymerization (ATRP) of oligo(ethylene oxide) monomethyl ether methacrylate (OEOMA500) in water is enabled using CuBr2with tris(2‐pyridylmethyl)amine (TPMA) as a ligand under blue or green‐light irradiation without requiring any additional reagent, such as a photo‐reductant, or the need for prior deoxygenation. Polymers with low dispersity (Đ = 1.18–1.25) are synthesized at high conversion (>95%) using TPMA from three different suppliers, while no polymerization occurred with TPMA is synthesized and purified in the laboratory. Based on spectroscopic studies, it is proposed that TPMA impurities (i.e., imine and nitrone dipyridine), which absorb blue and green light, can act as photosensitive co‐catalyst(s) in a light region where neither pure TPMA nor [(TPMA)CuBr]+absorbs light.

     
    more » « less